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ABSTRACT 
We present results of a mathematical model for the gas flow in an internal combustion engine consisting 
of a single cylinder with an inlet and outlet pipe. In order to achieve optimal performance of the engine 
the dependence of the gas flow on physical parameters such as pipe dimensions and valve geometry need 
to be understood. A system of ordinary differential equations (in time t) with discontinuous right-hand 
side describes the gas properties in the cylinder, whereas the gas flow in each pipe is modelled by the Euler 
equations, a system of hyperbolic partial differential equations. The explicit method of Euler and a TVD 
scheme are used for solving these equations. However, since the coupling of the pipe equations with the 
o.d.e. system in the cylinder on one side and atmospheric gas properties on the other appeared to be a 
main problem, we concentrate on appropriate coupling conditions. The numerical techniques involve 
discretization in space and time, and we present different methods of discrete coupling. As a main 
result we show that the various coupling methods lead to quite different numerical solutions. Therefore, 
a careful treatment of the coupling conditions is crucial. 
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INTRODUCTION 
We consider a four-stroke cycle internal combustion engine consisting of a single cylinder, inlet 
and outlet pipe and two valves connecting the cylinder with the pipes, as shown in Figure 1. 

One four-stroke cycle includes combustion cycle and charge cycle. During the latter the burnt 
gas is replaced by a fresh fuel-air mixture. The gas exchange is controlled by the movement of 
inlet and outlet valves and is strongly affected by their geometrical shape. 

Optimal performance of an internal combustion engine is of great interest and requires the 
complete replacement of the burnt gas during the charge cycle. In order to support the gas 
exchange it is essential to open the inlet valve when there is high pressure in the inlet pipe and 
to open the outlet valve when there is low pressure in the outlet pipe. 

The original problem can be classified as an 'inverse problem': how should specified technical 
parameters, e.g. the diameter of the pipe and the geometry of the valves, be chosen in order to 
achieve an optimal charge cycle? 

In the following we treat the 'simulation problem' for the simplified model: atmosphere-
cylinder (o.d.e. system)-inlet pipe (gas equations)-atmosphere. A mathematical modelling of 
the outlet pipe can be carried out in analogy to the inlet pipe. 

MATHEMATICAL MODEL 
The time dependency of mass mz, temperature Tz and pressure pz of the gas in the cylinder is 
described. Within the inlet pipe we study the time dependency of the gas density pE, velocity 
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uE and pressure pE (pE, uE and pE are also dependent on space x). The atmospheric gas values 
pAT, pAT and TAT are known. Furthermore the systems cylinder and inlet pipe as well as inlet 
pipe and atmosphere have to be coupled, and the upper index 'K' denotes the coupling quantities. 
A scheme of the coupled systems is shown in Figure 2. 

Cylinder equations 
Figure 3 shows the geometry of the cylinder. l, r and H are given geometric constants. The 

crank angle φ is a function of time t: φ = ωt, where ω denotes the angular frequency. The cylinder 
volume Vz and the distance s are functions of φ (and therefore functions of t): 
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where VH, ε and λ are given physical parameters. 
The original three-dimensional hydrodynamical problem of the gas flow in the cylinder is 

simplified by neglecting the dependence on spatial dimensions and assuming an ideal gas, which 
does not change its thermodynamical properties during the combustion cycle. Mass balance 
and energy balance yield a system of two ordinary differential equations in time t for mass mz 
and temperature Tz: 

The pressure pz is given by the ideal gas law: 

We use the notations: 

mE/mA mass flowing through inlet/outlet valve 
mB mass of fuel 
hE/hA enthalpy which is added or removed through inlet/outlet valve 
QB combustion energy 
QW heat loss caused by heat exchange with the cylinder surface 
cv, cp, K and R are thermodynamic constants: 
cv/cp specific heat capacity for constant volume/pressure 
K=CP/CV ratio of the specific heat capacities 
R universal gas constant 

The right-hand side of the o.d.e. system (1), (2) depends on geometric and experimental data 
and partly discontinuous empirical functions as summarized in the following. 

Geometry of the valves. The cross-sectional area AE/A(t) of the inlet/outlet valve opening is 
given by: 

AE/A(t)=dE/AυhE/A(ωt)π sin β (4) 

where the distances dE, dA and the angle β are known, and υhE, υhA are functions of t as shown 
in Figures 4 and 5. 

Mass flow through the valves. The mass flow through the valves is dependent on the 
cross-sections, AE and AA, of the valve openings: 
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where pz=mz/Vz denotes the gas density in the cylinder and 

Enthalpies. For simplification we assume an ideal gas and obtain: 

Heat loss at the cylinder surface. The heat exchange between gas and cylinder surface is 
described by: 

Az denotes the cylinder surface and Tw the average surface temperature. A formula for the 
approximate computation of the heat transfer parameter a is taken from Woschni19: 

where 
d cylinder diameter 
cm average velocity of the piston 
Pz—P0 difference of pressures during combustion (pz) and without combustion energy (p0) 
P1,T1, V1 pressure, temperature and volume of a known gas state during compression (e.g. at 

the time when the inlet valve closes) 
C1,C2 constants 

Combustion. There is no simple analytical way to describe the combustion process and to 
compute dQB/dt (QB: combustion heat). We use an empirical function describing the so called 
Wiebe combustion process, see Woschni18: 

for 0≤t — tB≤t0, else dQB/dt = 0, where 
Hu heating value 
mBo total fuel mass (burnt during one combustion cycle) 
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t0 total time of combustion 
tB time at which combustion starts 
m formal parameter, e.g. m = 1 
Summarizing we can state: the right-hand side of the o.d.e. system (1), (2) is quite complex and 
can be rewritten as: 

where 

denotes a vector of the coupling quantities. M and T are discontinuous functions depending on 
experimental parameters and empirical functions. The discontinuities are caused by the 
mathematical model and not by the physical process. The advantage of the mixed theoretical-
empirical model (13), (14) is its simplicity compared to the complete Navier-Stokes equations 
by which chemical reactions for a complex geometry are taken into account. The compact model 
(13), (14) can be studied more easily to have a realistic prediction of parameter changes. Note 
that the dependence of M and T on the coupling quantities involves dependence on pipe values. 
The pressure pz is given by (3): 

Pipe equations 
The gas flow within the inlet pipe is described for the unsteady, one-dimensional, compressible 

and non-isentropic case which is modelled by the Euler equations of gas dynamics, a hyperbolic 
system of partial differential equations for density p, velocity u and pressure p (the subscript 'E' 
for the pipe values is omitted in the following): 

where A = A(x,t) denotes the cross-sectional area of the pipe2,8,10,11. 
In the following we simplify our model by restricting the pipe to a constant cross-section. 

System (15) reduces to: 

For the treatment of the coupling conditions the characteristic form of (16) is useful. The 
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characteristic directions (eigenvalues of the matrix in (16)) are given by: 

where (sound speed), and hence (16) is equivalent to: 
(pt + (u + a)px) + pa(ut + (u + a)ux) = 0 
(p t+ (u – a)px) –pa(ut + (u – a)ux) = 0 (18) 

(pt + upx) – a2(pt + upx) = 0 
System (16) can also be rewritten as a system of conservation laws: 

where 

and energy per unit volume 

m=pu momentum per unit volume 
or equivalently 

where 

The conservation law form is used for the numerical solution of the pipe equations (see next 
section). 

For a complete description of the gas flow in the pipe (length L) we need initial values and 
boundary values in addition to (16). The boundary values are functions of the cylinder values 
on one side and atmospheric gas properties on the other as discussed later. For the model 
description see Engl4, Stark et al.16. 

NUMERICAL METHODS 
An o.d.e. system with discontinuous right-hand side can be solved by a numerical method of 
high order together with switching functions in order to handle the discontinuities1,12. However, 
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this technique does not seem suitable and efficient for the solution of the cylinder equations (1), 
(2), since the right-hand side of the o.d.e. system is based on too many empirical functions. 
Therefore the explicit first order method of Euler was used17. 

The hyperbolic system (16) describing the gas flow in the pipe was solved by a TVD method 
applied to the conservation law form (19), (20) 

TVD (total variation diminishing) methods belong to the class of high resolution schemes for 
hyperbolic conservation laws. They produce numerical solutions whose total variation is 
non-increasing with time. Unwanted oscillations are prevented8,10. 

Our solution procedure is based on a second-order explicit 5-point TVD-method by Harten6 

who introduced the concept of total variation boundedness. In the following we present the 
scheme for a single conservation law 

ut+f(u)x≡ut+a(u)ux= 0, a(u)=df(u)/du, – ∞ < x < ∞ (21) 

with initial conditions given for t = 0. Let denote approximations to the exact solution u at 
discretization points (xj,tn), jЄZ, nЄN. 

The TVD method is written in terms of a numerical flux function which is consistent with 
the physical flux f ( (u,...,u) = f(u)): 

where 
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The scheme is total variation diminishing under the CFL-like restriction 

The scalar scheme (22) can be extended to general systems of conservation laws as described 
by Harten6, and the method was applied to the pipe equations (19), (20). In this case the CFL 
condition 

has to be satisfied for each time step Δt, where λi i = 1,2,3, denote the eigenvalues of the matrix 
A in (20) or equivalently the characteristic slopes in (17). More precisely, let x0, x1,...,xM be 
the discretization points in the inlet pipe as shown in Figure 6, and 

denote approximations of p(xj, tn) and so on. 
Assume that p, u, p and T are known for the time level tn. The CFL condition (23) is satisfied, 

if the time step Δt and the new time level tn+1 = tn+Δt are restricted by: 

where 

Experiments were also made with the Lax-Wendroff method applied to the pipe equations, see 
Engl and Rentrop5. The Lax-Wendroff method is based on a standard finite difference 
discretization of (19), (20), see e.g. Hirsch8, LeVeque10. Note that the method is obtained by 
choosing Q(x)=x2 in (22). Our results are in good agreement with the fact that schemes of this 
type produce spurious oscillations in the numerical solution. The TVD method leads to smoother 
solutions. 

THE COUPLING PROBLEM 
We now study the coupling of the systems cylinder and inlet pipe on one side, inlet pipe and 
atmosphere on the other. 

The mentioned numerical methods are applied by using uniform discretization in the pipe 
(Δt=const.) and variable time steps Δt. Figure 7 shows the situation for two time levels. The 
coupling quantities are equivalent to the boundary values of the pipe equations, i.e. we have 

for the coupling cylinder-pipe and 

for the coupling pipe-atmosphere. 
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In the following the subscript 'E' for the pipe values is omitted. Let 

denote approximate values for the solution of the pipe equations at grid points (xj, tn) and for 
the cylinder values at time t = tn. 

Applying the explicit numerical methods described above to the cylinder and pipe equations 
we obtain approximate values 

at time tn+1 = tn + Δt. 
In order to find the unknowns at meshpoints (x0, tn+1) and (xM, tn+1) we need suitable coupling 

conditions. We present different coupling methods which are discussed separately for the coupling 
pipe-atmosphere and for the coupling cylinder-pipe in the following subsections. 

Coupling pipe-atmosphere 
In this case we need equations for the unknowns 

The number of physical boundary conditions to be imposed corresponds to the number of 
characteristics with negative slope at (xM, tn+1). In addition, numerical boundary conditions are 
required for a complete system of three boundary equations. More details about the boundary 
treatment of the pipe equations (Euler equations) can for example be found in Hirsch8. The 
assumption of subsonic flow (|u|<a) is reasonable for the following. 

Quasi-steady method. Neglecting time dependence at time t = tn+1 and assuming isentropic 
flow (pp-K = const.) and conservation of enthalpy (cpT+u2/2 = const.) we obtain for the case 
PM-1≤PAT (inflow) 

and for the case pM-1>pAT (outflow) 

(the upper index ' n + 1 ' is omitted). Concerning physical boundary conditions, pp-K and 
cpT+u2/2 are prescribed in the inflow case, and p is imposed in the outflow case. The numerical 
boundary conditions are obtained by extrapolation of inner values. pM is determined by the 
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ideal gas law: pM=pM/RTM. Since the atmospheric values are given at any time, we can easily 
solve these equations for the unknowns. 

Method of characteristics. We now use the characteristic form (18) of the pipe equations: 
(pt + (u + a)px)+pa(ut+(u + a)ux)=0 
(pt + (u-a)px)-pa(ut + (u-a)ux)=0 

(pt + upx)-a2(pt+upx)=0 
with its characteristic slopes 

λ1 = u + a, λ2 = u—a and λ3 = u 
Courant et al.3 suggested a difference method for the solution of a hyperbolic system which is 
written in characteristic form: All time derivatives are replaced by forward difference quotients, 
and in each equation the space derivatives are replaced by backward (forward) difference 
quotients if the corresponding characteristic slope is positive (negative). 

Using this idea in our case at x=xM and assuming |u|< a we find 

and 

for or 

for or 

for . 
The numerical as well as physical boundary conditions are now obtained by a discretization 

of the characteristic equations. System (27) has the form 

with known coefficients a1,b1,...,c3 and can therefore be solved for the unknowns 
and is given by the ideal gas law. Note that a negative characteristic slope in the 
original equations (18) introduces the atmospheric values. 

Combination of the quasi-steady method and the method of characteristics. The quasi-steady 
method does not take into account the characteristic equations but uses an extrapolation 
technique to obtain numerical boundary conditions. The method of characteristics, however, 
considers characteristic curves with positive as well as negative slope and assumes some kind 
of continuation of the curves into the region outside the pipe. We suggest a third method which 
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combines the ideas of both methods described above and seems to be a better approach: 
We only consider the equations of the characteristic form (18) with positive characteristic 

slope and replace the partial derivatives by difference quotients according to the method of 
characteristics. This yields numerical boundary conditions. The system of coupling conditions 
is completed by steady-flow boundary conditions which correspond to the physical boundary 
conditions of the quasi-steady method13. 

We obtain the following system of equations in the case of inflow : 

In the case of outflow we have 

The first system can be transformed into a non-linear equation for which was solved using 
Newton's method. System (30) is linear, and the solution can easily be obtained. 

Coupling cylinder-pipe 
Instead of presenting a satisfying solution for the coupling cylinder-pipe (which has not yet 

been found), we will describe the approaches made so far and mention the difficulties which 
arose. Numerical results show that the coupling problem cannot be neglected and a proper 
treatment of the coupling conditions is very important. As in the case of the coupling 
pipe-atmosphere different coupling methods for finding the unknowns 

are presented. Again, subsonic flow is assumed (|u |<a). 
Quasi-steady method. In addition to the assumptions of steady and isentropic flow and 

conservation of enthalpy we distinguish the cases of an open and a closed inlet valve and obtain 
at time t = tn+1 (the upper index 'n + 1' is omitted): 

• Open inlet valve (AE(tn+1)≠0) 
P1≤Pz (inflow into pipe) 

P1>Pz (outflow from pipe) 
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• Closed inlet valve (AE(tn+1)=0) 

The ideal gas law yields p0=p0/RT0. Note that Tz and pz are obtained as solutions of the o.d.e. 
system. 

Method of characteristics. We use the characteristic form (18) of the pipe equations and 
replace the time derivatives by forward difference quotients and the space derivatives in each 
equation by backward or forward difference quotients depending on the slope of the 
corresponding characteristic curve. With the assumption |u|<a we find for the case of an open 
inlet valve (AE(tn+1)≠0): 

and 

for or 

for or 

for . 
This system has the form 

where the coefficients are known. 
In the case of a closed inlet valve (AE(tn+1)=0) we have , and the approximations of 

the 2nd and 3rd characteristic equations yield and (see 
(34), (35)). Note that in this case the equations are not dependent on the physical properties of 
the cylinder. 

Remarks. We have already mentioned critical aspects of the quasi-steady method and the 
method of characteristics. For the coupling pipe-atmosphere we obtained a better approach by 
combining the two methods. The implementation of a combined approach for the coupling 
cylinder-pipe, however, lead to instabilities expressed by negative approximate values for the 
pipe pressure. 

Further investigations will be based on the pipe equations (15) by which a variable 
cross-sectional area within a region of the boundary can be taken into account. 
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N U M E R I C A L R E S U L T S 
Illustrations and discussion 

The first five of the presented figures show technically interesting results, the last one illustrates 
numerical aspects. The number of discretization intervals used in the inlet pipe is M = 80. 

Figure 8-12 refer to a complete four-stroke cycle which includes the inflow of a fresh fuel-air 
mixture through the inlet valve, combustion and the outflow of the burnt gas through the outlet 
valve. 

The time dependencies of the cylinder volume, the valve opening/closing and the combustion 
energy are given as shown in Figures 8-10. 

Figure 11 presents numerical results for the temperature in the cylinder. If no combustion 
energy is added, a lower temperature is obtained as depicted for comparison. The pressure in 
the inlet pipe as a function of t for fixed x=L/2 is shown in Figure 12. Note the oscillating 
behaviour of the pressure after closing the inlet valve. 

The method of characteristics and the combination method were used for the coupling 
cylinder-pipe and the coupling pipe-atmosphere respectively. 7076 time steps were carried out. 

Figure 13 refers to numerical properties. It shows the pressure in the inlet pipe as a function 
of t for fixed x=L/2 during one charge cycle. The numerical results were obtained by different 
coupling methods for the coupling pipe-atmosphere. The systems cylinder and pipe were coupled 
by the method of characteristics. In each case 3537 times steps were carried out. 

Experiments were also made with non-reflecting boundary conditions for the open end of the 
pipe7. The results are very similar to the numerical solution which corresponds to a coupling 
of pipe and atmosphere by the method of characteristics. Figure 13 clearly shows the main result 
of our work: the numerical solution of the cylinder and pipe equations is strongly dependent 
on the coupling conditions. On one side, many different ways of obtaining boundary values for 
the Euler equations are known8. On the other side, different boundary treatments do not 
necessarily yield similar numerical solutions as illustrated by our results. In our case, a proper 
treatment of the coupling problem is very important, and further work is being done. 

Comparison with other studies 
A similar modelling of the gas flow in an internal combustion engine can be found in Stark 

et al.16, Lakshminarayanan et al.9 In both cases, the numerical simulation involves standard finite 
difference schemes, and the coupling/boundary conditions are based on a quasi-steady approach. 
The papers do not include further studies on the influence of coupling conditions. 

Concerning industrial applications, the program system PROMO and its improved version 
PROMO 2 are used in the German car industry. PROMO simulates the gas flow in an internal 
combustion engine, see Seifert et al.15 Its mathematical model is similar to the model described 
in this paper. It involves one-dimensional treatment of the gas flow in the engine pipes and the 
modelling of cylinders by o.d.e. systems in time t. Experiments showed that a realistic model is 
obtained. The numerical solution procedure includes a Lax-Wendroff type method applied to 
the pipe equations. It is reported that, in general, a comparison between measurement and 
computation yields good results. However, in some cases it was observed that the Lax-Wendroff 
type scheme produced unacceptable numerical errors14. 

The boundary and coupling conditions in PROMO are imposed similarly to the combination 
method described in this paper. Numerical coupling conditions are obtained by a discretization 
of characteristic equations. Quasi-steady flow assumptions yield physical boundary conditions. 
More precisely, a steady flow equation by Saint Venant is used which determines the ideal mass 
flow mth through a throttling point in a pipe. Momentum and energy losses are taken into 
account by a flow coefficient α(0≤α≤1):αm t h denotes the real mass flow. The flow coefficient 
is determined by measurement, and the user of PROMO has to provide flow coefficients for all 
points of the engine where boundary/coupling conditions are required. If the physical boundary 
conditions of the combination method are replaced by the engineers' equations which involve 
the flow coefficient α, similar results are obtained with a choice of α close to 1 (Figure 14). 
However, the non-linear system of coupling equations becomes a lot more complex. 
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Figure 14 refers to the model described in this paper. It shows the pressure in the inlet pipe 
as a function of t for fixed x = L/2 during one charge cycle. The numerical results were obtained 
by different coupling methods for the coupling pipe-atmosphere. The solid line corresponds 
to the presented combination method, and the PROMO approach yields results represented by 
the broken lines. 
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APPENDIX: LISTING OF PHYSICAL PARAMETER 

Cylinder 

cylinder diameter d=0.08[m] 
length of stroke H=0.085 [m] 
length of connecting-rod l=0.17[m] 
stroke volume VH=4.2726 x 1 0 - 4 [m3] 
compression ratio ε=7 
length of crank r=0.0425 [m] 

ratio of r and l 

number of revolutions per second 

average surface temperature TW=450 [K] 

Valves 
diameters dE=0.036 [m] 

dA=0.028 [m] 

angle 

Inlet pipe 

length of inlet pipe L= 1.0 [m] 

Thermodynamic constants 

universal gas constant 

specific heat capacities 

ratio of the specific heat capacities K= 1.4 

Atmosphere 

pressure 
temperature TA T=300 [K] 
density 

Initial values (for φi= — 30° and ti=φiω) 

cylinder pressure 

cylinder temperature Tz(ti)=470 [K] 
gas velocity in inlet pipe uE(x, t i )=0 for 0 ≤ x ≤ L 
pipe pressure pE(x, ti)=pAT for 0≤x≤L 
pipe density pE(x, ti)=pAT for 0≤x≤L 


